Advanced Ceramic Solutions for the Aerospace & Defense Industry

Your Experienced Partner

Superior Technical Ceramics (STC) has been a recognized leader in the aerospace and defense industries for over 40 years. We are an ITAR registered, AS9100 and ISO 9001 certified Small Business. We create specialized ceramic components in partnership with the nation's most prominent aerospace and defense participants.

Our Services Include

- Materials Design Consulting
- Proprietary Materials Development
- Prototype Manufacturing
- Toll Processing

- Volume Manufacturing for Full Product Life-Cycle Support
- Proof of Concept through Production
- Specializing in Complex Shapes & Exacting Tolerances

Engine, Exhaust and Propulsion Components:

- Blades, Vanes & Valves
- Combustion Liners
- Fuel System Components
- Igniters, Leads, Nozzles & Shrouds

Sensor Components:

- High Temperature Sensor Assemblies
 Thermocouple Housing
- Turbine Sensors

• Tubes & Rods

• Rupture Discs

• Engine Monitoring Components

- Gas Sensor Components
- Sonar Components

• Turbine Sensors

Detection

Analytical Instrumentation Components:

- Altimeters Components
- Fire Detection Components
- Vibration Sensor Components
- Satellite Positioning Components

- **Guidance and Navigation Components:**
- Laser Components
- Radomes Radar Components
- Missile Guidance Components
- Infrared Navigation Components

Custom Development and Commercialization:

- Proprietary Ceramic Material Processing
- Advanced Ceramic **Optical Windows & Domes**

Electrical Components:

- Antennas
- Capacitors
- Connectors

- Ceramic Matrix Composite (CMC) Machining
- Ceramic Toll Processing
- High Voltage Feed-Throughs
- Lighting Components
- Resistors

- Ballistic Transparent Ceramics

• Gyroscope Components

Explosive & Chemical

Technical Ceramic Solutions for the Aerospace & Defense Industry

A Broad Spectrum of Ceramic Material Solutions

We have experience in working with technical ceramics materials, including Alumina (74-99.96%), Zirconia Toughened Alumina (ZTA), Zirconia (YTZP, MSZ, CSZ) and Silicon Nitride (Si₃N₄). The unique attributes of each material allow our engineers to solve individual industry challenges, all while providing cost effective solutions.

				Alumina			High Purity Alumina		Zirconia Toughened Alumina			Zirconia				Nitride
	Property	ASTM Method	Units	AL95 95%	AL96 96%	AL98 98%	AL995 99.5%	AL9980 99.8%	ZTA-02 US Patent 8679995	ZTA-14	ZTA- 20	MSZ (Magnesia Stabilized)	YTZP 2000 (Yttria Stabilized)	YTZP 4000 (Yttria Stabilized)	CSZ (Ceria Stabilized)	Silicon Nitride (Si ₃ N₄)
General	Color			lvory	White or Purple	White	lvory- White	lvory	Off White	White	White	lvory or Yellow	lvory	lvory	Yellow	Black
	Gas Permeability		atms-cc/sec	gas tight <10 ⁻¹⁰	gas tight <10 ⁻¹⁰	gas tight <10 ⁻¹⁰	gas tight <10 ⁻¹⁰									
	Density	C 20-97	g/cc	3.65	3.71	3.78	3.88	3.91	3.96	4.17	4.30	5.72	6.02	6.07	6.20	3.25
Mechanical	Hardness	Vickers 500 gm	GPa (kg/mm²)	11.5 (1175)	12.7 (1300)	12.7 (1300)	14.3 (1459)	15 (1530)	14 (1440)	14.5 (1478)	14.4 (1470)	11.7 (1200)	12.5 (1250)	12.5 (1250)	11.7 (1200)	15 (1529)
	Hardness		R45N	79	81	81	82	86	81	82	82	78	80	80	78	83
	Fracture Toughness	Notched Beam	MPam ^{1/2}	3 - 4	4 - 5	4 - 5	4 - 5	3 - 4	5	6	6	12	10	10	12	6
	Flexural Strength (MOR)	F417-87	MPa (psi x 10 ³)	310 (45)	358 (52)	393 (57)	338 (49)	379 (55)	448 (65)	586 (85)	621 (90)	620 (90)	951 (138)	1380 (200)	551 (80)	900 (130)
	Tensile Strength @ RT		MPa (psi x 10 ³)	151 (22)	200 (29)	221 (32)	172 (25)	200 (29)	259 (38)	344 (50)	350 (51)	310 (45)	550 (80)	690 (100)	337 (49)	537 (78)
	Compressive Strength @ RT		MPa (psi x 10³)	1827 (265)	2068 (300)	2241 (325)	2137 (310)	2240 (325)	2413 (350)	2758 (400)	2758 (400)	1862 (270)	2485 (360)	2485 (360)	2000 (290)	2500 (362)
	Elastic Modulus	C848	GPa (psi x 10°)	303 (44)	310 (45)	345 (50)	379 (55)	379 (55)	358 (52)	338 (49)	338 (49)	206 (29.8)	210 (30)	210 (30)	200 (29)	300 (44)
	Poisson's Ratio	C848		0.22	0.22	0.23	0.23	0.23	0.23	0.23	0.23	0.28	0.30	0.30	0.25	0.28
Thermal	C.T.E. 25 - 100° C	C 372-96	x 10 ⁻⁶ /C	6.1	6.0	6.2	6.3	6.5	6.7	6.0	6.0	8.9	6.9	6.9	6.9	
	C.T.E. 25 - 600° C	C 372-96	x 10 ⁻⁶ /C	7.7	7.5	7.6	7.6	8.1	8.3	7.1	7.1	10.0	10.5	10.5	10.5	2.9
	Thermal Conductivity @ RT	C 408	W/m K	19	23	29	30	30	27	24	24	3	2.2	2.2	3.5	29
	Max Use Temp		Fahrenheit (°F)	3000	3100	3100	3047	3047	2732	2730	2730	2200	932	932	1000	2552
			Celsius (°C)	1650	1700	1700	1675	1675	1500	1500	1500	1200	500	500	537	1400
Electrical	Dielectric Strength (.125" Thick)	D 149-97A	V/mil	250	250	260	270	290	230	250	250	300	240	240	250	300
	Dielectric Constant @ 1 MHz	D 150-98		9.0	9.1	9.5	9.8	9.8	10.5	12.5	12.5	22.7	30.0	30.0	30.0	9.
	Dielectric Loss @ 1 MHz	D 150-98		0.0006	0.0004	0.0006	0.0002	< .0001	0.0003	0.0006	0.0006	0.0016	0.0010	0.0010	0.0010	
	Volume Resistivity, 25°C	D 257	ohms-cm	> 1 x 10 ¹⁴	> 1 x 10 ¹⁴	> 1 x 10 ¹⁴	> 1 x 10 ¹³	> 1 x 10 ¹³	> 1 x 10 ¹³	> 1 x 10 ¹³	> 1 x 10 ¹⁴					
	Volume Resistivity, 500°C	D 1829	ohms-cm	3 x 10 ⁹	7 x 10 ⁹	2 x 10 ⁹	5 x 10 ¹⁰	6 x 10 ¹⁰	6 x 10 ¹⁰	2 x 10 ⁹	2 x 10 ⁹	1 x 10 ⁷	1 x 10 ⁶	1 x 10 ⁶	1 x 10 ⁶	
Chemical	Acid / Base Resistance*															
	*These are general guidelines for reference o	nly. Actual chemical re	sistance is	Good Fair	Poor											

Alumina - All Around Material Solution

Alumina has versatile material properties making it a goto solution for diverse types of aerospace and defense applications. Its high strength along with excellent electrical, temperature and corrosion resistance makes it an excellent choice for use in analytical instrumentation, guidance and navigation, engine and sensor applications. Alumina is also easily metallized and brazed to produce vacuum tight ceramic to metal assemblies for air and space applications.

Zirconia Toughened Alumina for **Greater Strength & Durability**

Zirconia Toughened Alumina (ZTA) is an excellent choice for applications requiring greater toughness and higher strength than Alumina alone, while maintaining the corrosion resistance of Alumina. This material is used in similar applications as Alumina, but where pressures demand greater material strength and durability. ZTA can also be metalized and brazed, similar to Alumina, to offer unique possibilities when designing assemblies.

Zirconia Materials for Robust Mechanical **Properties and Thermal Performance**

The Zirconia family of materials provides toughness and durability in extreme environments that often require extended life performance. YTZP offers superior strength, MSZ excellent toughness, and CSZ is a tough material similar to MSZ but with proven low temperature chemical resistance in both extreme acidic and basic environments. Zirconia's low thermal conductivity also offers opportunities for thermal management applications.

Silicon Nitride for High Performance with Reduced Weight

Silicon Nitride provides superior strength and thermal performance for applications that require thermal shock resistance combined with overall material strength. At a lower density than the Zirconia materials, it is a lighter weight alternative while still providing excellent strength, corrosion and wear resistance.

Superior Technical Ceramics *Engineering. Partnership. Solutions.*

Engineering. Partnership. Solutions.

We specialize in providing highly technical, custom solutions for Energy Industry equipment applications. We are able to offer our customers deep expertise in the specific material properties of given ceramic materials, and matching them to specific use cases. Please contact us to discuss your unique challenges.

Ceramic Engineering Insight

We bring 120 years of ceramics engineering experience to our customers. Our engineers' expertise provides guidance in material selection, design-to-manufacture geometry and cost effective production.

Proven Experience in Quality Documentation Assurance

The performance of a ceramic component is dependent on the consistency and quality of its material properties. That's why we control every aspect of manufacturing; from raw material through to finished component. Powder preparation, forming, green machining, sintering and diamond grinding are all governed by the same principles of total quality management.

Responsive Service Culture

In the larger world of ceramics, we're a mid-sized firm located in Vermont. We pride ourselves on providing direct access to our key team members and quick response times for our customers.

Contact Us with Your Material Challenges:

Maria Puma

Applications Engineer, Aerospace & Defense mpuma@ceramics.net

(802) 524-5820

